
lable at ScienceDirect

Composites Science and Technology 129 (2016) 10e18
Contents lists avai
Composites Science and Technology

journal homepage: http: / /www.elsevier .com/locate /compscitech
Analytical effective elastic properties of particulate composites with
soft interfaces around anisotropic particles

Wenxiang Xu a, b, c, *, Huaifa Ma b, Shunying Ji c, Huisu Chen d, **

a Institute of Soft Matter Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 211100, PR China
b State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing
100048, PR China
c State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, PR China
d Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, PR China
a r t i c l e i n f o

Article history:
Received 11 January 2016
Received in revised form
25 March 2016
Accepted 10 April 2016
Available online 11 April 2016

Keywords:
Particle-reinforced composites
Interface
Elastic properties
Multiscale modeling
* Corresponding author. Institute of Soft Matter Me
and Materials, Hohai University, Nanjing 211100, PR C
** Corresponding author.

E-mail addresses: xwxfat@gmail.com (W. Xu), che

http://dx.doi.org/10.1016/j.compscitech.2016.04.011
0266-3538/© 2016 Elsevier Ltd. All rights reserved.
a b s t r a c t

Understanding the effects of interfacial properties on effective elastic properties is of great importance in
materials science and engineering. In this work, we propose a theoretical framework to predict the
effective moduli of three-phase heterogeneous particulate composites containing spheroidal particles,
soft interfaces, and a homogeneous matrix. We first derive the effective moduli of two-phase repre-
sentative volume elements (RVEs) with matrix and spheroidal inclusions using the variational principle.
Subsequently, an analytical model considering the volume fraction of soft interfaces around spheroidal
particles is presented. The effective moduli of such three-phase particulate composites are eventually
derived by the generalized self-consistent scheme. These theoretical schemes are compared with
experimental studies, numerical simulations, and theoretical approximations reported in the literature to
verify their validity. We further investigate the dependence of the effective elastic modulus on the
interfacial properties and the geometric characteristics of anisotropic particles based on the proposed
theoretical framework. Results show that the interfacial volume fraction and the effective elastic
modulus of particulate composites are strongly dependent on the aspect ratio, geometric size factor,
volume fraction, and particle size distribution of ellipsoidal particles.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Interfaces interacted by anisotropic particles are crucial com-
ponents in a variety of particulate materials like polymer, colloidal,
ceramic, and cementitious composites [1e4]. Understanding the
effects of interfacial characteristics on effective elastic properties as
average features by homogenization that well reflect the macro-
scopic mechanical responses of particulate composites, is a prob-
lem of great interest in materials research & development [3e7].
Specifically, the estimation of effective moduli of particulate com-
posites is of prime importance to better capture the behaviors of
composites and to evaluate the success of their design. In the
present work, we focus on spheroids as shape-anisotropic particles
over a broad range of aspect ratios with widespread applications in
chanics, College of Mechanics
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specific materials [1,4e6].
It has been experimentally observed by several imaging equip-

ment that interfaces as a weak link have a complex network that
adjacent interfaces possess an overlap potential in some particulate
composites, such as cementitious, ceramic, and colloidal compos-
ites, where the formation of interfaces normally attributes to the
packing of discrete grains against aggregate or wall surfaces,
namely, the so-called “wall” effect [8e10]. This also gives rise to the
physical natures of a relative high porosity and low rigidity for
interfaces around aggregates. As such, interfaces are usually viewed
as a compliant interphase (i.e., soft interfaces) between inclusions
and matrix [2,4,7e9], as well as particulate composites as a three-
phase composite structure consist of inclusions, soft interfaces, and
matrix.

Over the past decades, the researches for effective elastic
properties of three-phase particulate composites have attracted
much attention, especially for the three-phase composites con-
taining interfaces. The pioneering work was from Christensen and
Lo [11] that applied the generalized self-consistent scheme [12] to
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study the effective shear modulus of three-phase composites with
spherical inclusions. Thereafter, many seminal empirical and
theoretical formulae have been proposed to predict effective
moduli of three-phase composites, such as bounds models [13,14],
Mori-Tanaka scheme [15], differential effective medium approxi-
mation [16], generalized self-consistent scheme [12,17], and series
expansions [18], and other effective mediummethods. Fu et al. [19]
and Wang and Pan [20] have well summarized the existing studies
in this area, interested readers may refer to the two reviews. Also,
three kinds of interfacial model are often used to simulate the
properties of interfaces in those effective medium methods: the
linear-spring model, interface stress model, and interphase model
[7]. The first two models assume interfaces occupying a zero vol-
ume in composites that is essentially a two-phase composite
structure, whereas, the third one is a three-phase model, composed
of inclusions, interphase, and matrix, similar to the present case.
From view of the abovementioned micromechanics schemes, the
estimation of effective moduli of composites requires knowledge of
the volume fraction and elastic properties of individual phases
[11e20]. Therefore, as an important microstructural characteristic,
the volume fraction of interphase should be considered to inves-
tigate the effective elastic properties of three-phase composites. As
demonstrated by Torquato [5], the more microstructural charac-
teristics of composite media are explored, the more accurate their
effective properties can be estimated. It is worth mentioning that
Garboczi and Bentz [21] presented a theoretical approximation for
the volume fraction of soft interfaces around spherical particles,
and the theoretical model was further employed to predict the
effective conductivity of cementitious composites. Although such
the outstanding contribution may provide guidance for the effec-
tive elastic properties of particulate composites, isotropic spheres
cannot reflect the anisotropy nature of particles in particulate
composites. Also, the volume fraction of soft interfaces around
anisotropic particles has received relatively little attention in terms
of theoretical modeling until fairly recently [4,22e24]. Moreover, it
is quite challenging to evaluate the effect of such the interfacial
property on the elastic moduli of particulate composites with
anisotropic ellipsoidal particles and soft interfaces.

In the present study, heterogeneous particulate composites
consist of a homogeneous matrix, anisotropic spheroidal particles,
and soft interfaces. Perfect bonding conditions are assumed to
prevail at both the particle/interface and the interface/matrix. We
attempt to develop a theoretical framework to predict the effective
moduli of particulate composites, in order to provide an efficient
tool for their design. We first demonstrate a theoretical scheme for
predicting the effective moduli of two-phase composites with
spheroidal inclusions. We give an analytical approximation for the
volume fraction of soft interfaces around ellipsoidal particles.
Subsequently, by the generalized self-consistent scheme, the pre-
diction of the effective moduli of heterogeneous three-phase par-
ticulate composites is explicitly presented in details. The rest of this
article is organized as follows. Section 2 demonstrates the effective
moduli of two-phase composites. Section 3 presents the volume
fraction of soft interfaces around ellipsoidal particles. In Section 4,
the effective moduli of three-phase composites are proposed.
Subsequently, the theoretical results are given and discussed in
Section 5. Finally, this article is completed with some concluding
remarks in Section 6.

2. Effective moduli of two-phase composites

As mentioned above, several attempts have been made for
theoretically investigating the effective moduli of particulate
composites. It is worth mentioning that Wills and co-workers
[25,26] applied a generalized variational principle to propose
estimates of the Hashin-Shtrikman (HS) type for composites with
ellipsoidal inclusions and considering their spatial distribution
configurations. In that approximation, the RVE of an ergodic M-
phase heterogeneous composite consists ofM-1 types of ellipsoidal
inclusions, distributed in a homogeneous matrix (denoted as phase
1, with modulus tensor E1). It is assumed that there are mr in-
clusions of type r (r ¼ 2, 3,…,M), with modulus tensor Er. The basic
derivation of effective moduli is illustrated in Supplementary
Information (see S1). In that framework, a suitable choice for the
comparison material is the matrix material itself, i.e., E0 ¼ E1, so
that the polarization field vanishes exactly in the matrix phase and
the microstructural tensor 〈Ars〉 for this kind of RVE can be
expressed by

hArsi ¼ frðdrsLir � fsLdrsÞ; ðr; s ¼ 2;…;MÞ (1)

where fr is the volume fraction of inclusions of type r, tensors Lir and
Ldrs are associatedwith the inclusion and distribution shape tensors
Zir and Zdrs, respectively. Lir is defined as [27].

Lir ¼
1

4pjZirj
Z

jxj¼1

C0ðxÞ
���Z�1

ir ,x
����3

dSðxÞ (2)

where the integration is operated over the unit sphere jxj ¼ 1,
C0mn ¼ 1/E1mnxmxn, and xm is one of components of the unit vector.
Similarly, Ldrs can also be expressed by an analogous to Eq. (2) with
Zir replaced by Zdrs. The inverses of the eigenvalues of Zir and Zdrs

are the semi-axes of the ellipsoidal inclusion and the distribution
ellipsoid, respectively. If the distribution of inclusions is the same,
i.e., Ldrs ¼ Ld, Ld and Lir can be characterized by Eshelby tensors HV

and Hr, which represent the geometric factor tensors of the distri-
bution ellipsoid and the ellipsoidal inclusions of type r corre-
spondingly. Herein, we follow the works of Torquato [5] and Duan
et al. [27], where the 2 s-order tensors are displayed by the elliptical
integrals

Hj ¼
a1ja2ja3j

4p

Z
jxj¼1

C0ðxÞ,E1
Y3 dSðxÞ; ðj ¼ r;VÞ (3)

with

Y2 ¼ a21jx
2
1 þ a22jx

2
2 þ a23jx

2
3

where a1j, a2j, and a3j are the semi-axes of the j th ellipsoidal in-
clusion. For a spheroidal inclusion, its symmetry axis is aligned
along the Z-axis, namely, a1j ¼ a2j ¼ a, and a3j ¼ b. HV and Hr have
exactly diagonal eigenvalues, that is

Hj ¼
2
4Hj 0 0

0 Hj 0
0 0 1� 2Hj

3
5; ðj ¼ r;VÞ (4)
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where k is the aspect ratio of spheroid defined as k¼ b/a. If k > 1, the
spheroid is prolate; if k < 1, the spheroid is oblate. For some special
cases of the spheroid, for instance, a sphere (k ¼ 1), Hj ¼ 1/3; a
needle-shaped particle (e.g., fiber, k ¼ ∞), Hj ¼ 1/2; a disk-shaped
particle (e.g., platelet, k ¼ 0), Hj ¼ 0. Thus, according to Eqs. (2)
and (3), Lir and Ld can be explicitly expressed by

Lir ¼ Hr,E�1
1 ; Ld ¼ HV,E

�1
1 (6)

Combination of Eq. (17) in S1 and Eqs. (1) and (6), the effective
moduli tensor �E of an ergodic M-phase heterogeneous composite
consisting of M-1 types of ellipsoidal inclusions, distributed with
ellipsoidal symmetry in matrix can be represented as

E ¼ E1 þ E1,

2
4 XM

r¼2

Tr

!�1

�HV

3
5
�1

(7)

where

Tr ¼ fr
h
ðEr � E1Þ�1,E1 þHr

i�1
(8)

In the following, we consider the microstructure of a two-phase
particulate composite that anisotropic spheroidal inclusions of the
same type (e.g., possessing a constant aspect ratio) are randomly
distributed in a homogeneous matrix with an elastic modulus E1,
shear modulus G1, bulk modulus K1, Poisson ratio n1, and volume
fraction f1, as shown in Fig. S1. The spheroidal inclusions have an
elastic modulus E2, shear modulus G2, bulk modulus K2, Poisson
ratio n2, and volume fraction f2. These elastic properties are related
as follows

Gi ¼
Ei

2ð1þ niÞ
;Ki ¼

Ei
3ð1� 2niÞ

; ði ¼ 1;2Þ (9)

ni ¼
ð3Ki � 2GiÞ
2ð3Ki þ GiÞ

;
9
Ei

¼ 1
Ki

þ 3
Gi
; ði ¼ 1;2Þ (10)

Without loss of generality, we here take the effective elastic
modulus as elastic properties of our focus. In the current case, the
RVE of randomly distributed spheroids is isotropic. The shape of the
distribution spheroid should thus be spherical, namely, HV ¼ 1/3.
The effective elastic modulus of two-phase RVE can be calculated
by substituting M ¼ 2 into Eq. (7).

E ¼ E1 þ E1,
�
ðT2Þ�1 � 1

3

��1
(11)

where

T2 ¼ 1
3
f2ðE2 � E1Þ

�
2

E1 þ H2ðE2 � E1Þ
þ 1
E1 þ ð1� 2H2ÞðE2 � E1Þ

�
(12)
3. Volume fraction of soft interfaces

In this work, the microstructure of a three-phase particulate
composite is composed as the well-known hard core-soft shell
structured particles [28], inwhich the interfacial layer as a soft shell
of a predefined dimension is coated on the surface of each hard
spheroidal core, as shown in Fig. 1. It is worth mentioning that the
construction of interfacial layers of a constant dimension can be
realized by the Minkowski addition manner, the detailed
procedures of which can be found in the recent reference [24]. We
adopt our preliminary work that the soft interfacial volume fraction
around polydisperse spheroidal particles is obtained by an
approximate theoretical scheme [22], as depicted the following
formula. The detailed derivation is presented in Supplementary
Information (see S3).

Vsi ¼
�
1� Vp

�(
1� exp

"
� 6VpD

D3
eq

E�eðsÞt þ dðsÞt2 þ gðsÞt3
	#)

(13)

where Vsi and Vp are the volume fractions of soft interfaces and hard
particles, respectively. Deq is an equivalent diameter as the size of
anisotropic particles defined as the diameter of a sphere having the
same volume as the anisotropic particle. 〈 〉 indicates a number-
averaged treatment in polydisperse spheroidal particle systems
different from that depicted in S1. t is the interfacial thickness. e(s),
d(s), and g(s) are the parameters, the formulae for which are
expressed as Eqs. (30)e(32) in S3, respectively. For monodisperse
three-phase RVEs, we prescribe a geometric size factor l to reflect
the coupling effect between the interfacial dimension and the
particle size, namely, l¼ t/Deq. Thus, the interfacial volume fraction
in monodisperse three-phase RVEs is expressed as

Vsi ¼
�
1� Vp

� 
1� exp

(
� 6Vp�

1� Vp
�
"

1
nðkÞ l

þ
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n2ðkÞ�1� Vp
�
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l2 þ 4

3
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nðkÞ�1� Vp
�

þ mV2
p

n3ðkÞ�1� Vp
�2
!
l3
#)!

(14)

where n (k) is the sphericity of a spheroidal particle defined as the
ratio of the surface area between a sphere and a spheroid with the
same volume (see Eq. (29) in S3).m is a parameter equivalent to 0, 2
or 3, the explanation of which is illustrated in S3. From the above
formula, it can be found that the interfacial volume fraction in
monodisperse RVEs predominantly relies on the geometric size
factor l and the geometric shape of anisotropic spheroidal particles,
in addition to the volume fraction of particles. That suggests the
constant l with different t and Deq possessing the uniform Vsi.
4. Effective moduli of three-phase composites

We here employ a three-layer composite spheroid assemblage
model representing the three-phase RVE to capture the effective
elastic modulus of particulate composites, as shown in Fig. 2. The
blue spheroidal inclusion, gray shell, and yellow shell in Fig. 2
represent the particle phase, interface phase, and matrix, respec-
tively. It is supposed that the three spheroidal shells possess
concentric and the elastic modulus of each phase in all directions is
the same, at least, as an average. Our strategy starts that the three-
phase composite structure is divided into two two-phase cells: the
first one consists of the particle phase and interface phase; the
second one is viewed as matrix and a composite particle phase
composed of hard particle and its adjacent interface, as shown in
Fig. 2. Each two-phase cell as a basic object of study is investigated
to derive the effective elastic modulus of particulate composites.
We consider the first two-phase cell, in which hard particles and
interfaces are regarded as inclusions and a matrix, respectively.
Based on the results illustrated in Section 2, the effective elastic
modulus of the first two-phase composite cell can be given by



Fig. 1. Visualizations of three-phase RVEs composed of anisotropic particles (i.e., blue spheroids), soft interfaces (i.e., transparent spheroidal shells), and a homogeneous matrix. The
interfacial dimension of t ¼ 2.0 and other parameters are in agreement with that demonstrated in Fig. S1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. Schematic view of the three-layer composite spheroid assemblage model, which is divided into two two-phase cells.
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E
ð1Þ ¼ Ei þ Ei,

��
Tð1Þ2

	�1 � 1
3

��1

(15)

with

Tð1Þ2 ¼ 1
3
f ð1Þ2

�
Ep � Ei

�24 2

Ei þ Hð1Þ
2

�
Ep � Ei

�

þ 1

Ei þ
�
1� 2Hð1Þ

2

	�
Ep � Ei

�
3
5 (16)

where �E(1) is the effective elastic modulus of the first two-phase
cell, which is essentially equivalent to the elastic modulus of the
composite particle phase mentioned in the second two-phase cell.
Ep and Ei are the elastic moduli of hard particles and interfaces (i.e.,
E2 ¼ Ep, E1 ¼ Ei), respectively. H2

(1) is the geometric factor of hard
particles with a constant aspect ratio of k, as expressed by Eq. (5).
f2
(1) is the volume fraction of inclusions in the first one, which should
equal to the volume fraction of hard particles occupying to the
whole cell with particles and interfaces, i.e., f2(1) ¼ Vp/(Vp þ Vsi).

We further investigate the second one, in which the composite
particles are viewed as inclusions (see Fig. 2). In doing so, E2 ¼ �E(1),
E1 ¼ Em, where Em is the elastic modulus of matrix in particulate
composites. Similarly, in terms of Eqs. (11), (12), (15) and (16), the
effective elastic modulus of the second one, namely, the effective
elastic modulus of the three-phase composite RVE, is presented as:

Ee ¼ Em þ Em,
��

Tð2Þ2

	�1 � 1
3

��1
(17)

with
Tð2Þ2 ¼ 1
3
f ð2Þ2

�
E
ð1Þ � Em

	264 2

Em þ Hð2Þ
2

�
E
ð1Þ � Em

	

þ 1

Em þ
�
1� 2Hð2Þ

2

	�
E
ð1Þ � Em

	
3
75 (18)

where Ee is the effective elastic modulus of particulate composites
of three-phase structure. f2(2) is the volume fraction of the composite
particle phase in the second cell that is actually the region of hard
particles and interfaces occupying to particulate composites, i.e.,
f2
(2) ¼ Vp þ Vsi. H2

(2) is the geometrical factor of composite particles
with the aspect ratio kc. Note that the aspect ratio of composite
particles is not the aspect ratio of hard particles, kc s k, since the
three semi-axes of a composite spheroidal particle should be a þ t,
a þ t, and b þ t (a, a, and b are the semi-axes of the corresponding
hard particle, see Section 2), respectively. In terms of the definitions
of equivalent diameter and geometric size factor mentioned in
Section 3, the aspect ratio kc of composite spheroidal particles can
be given by

kc ¼ bþ t
aþ t

¼ 0:5Deqk2=3 þ t
0:5Deqk�1=3 þ t

¼ 0:5k2=3 þ l

0:5k�1=3 þ l
(19)

It can be seen from the above formula that the aspect ratio of
composite spheroidal particles is not only dependent on the aspect
ratio of hard particles, but also the geometric size factor. Interest-
ingly, when the interfacial dimension is much smaller than the
particle size, namely, l/0, the present composite spheroid
assemblage is just reduced as isomorphic ellipsoidal shells, which is
distinctively different from those composite spheroid models re-
ported in the previous researches [4,25e27].
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We also consider several special issues of ellipsoidal particles
mentioned in Section 2, such as spheres (k ¼ 1, H2 ¼ 1/3), fibers
(k ¼ ∞, H2 ¼ 1/2), and platelets (k ¼ 0, H2 ¼ 0). If anisotropic el-
lipsoids degenerate to spheres, the effective elastic modulus of
particulate composites is reduced to

Ee ¼ Em þ Em,
3f ð2Þ2

�
E
ð1Þ � Em

	
3Em þ

�
1� f ð2Þ2

	�
E
ð1Þ � Em

	 (20)

with

E
ð1Þ ¼ Ei þ Ei,

3f ð1Þ2

�
Ep � Ei

�
3Ei þ

�
1� f ð1Þ2

	�
Ep � Ei

� (21)

Moreover, if the interfacial dimension equals to zero, namely,
Vsi¼ 0 and f2

(1)¼ 1, so that �E(1)¼ Ep, the present result reduces to the
well-knownHashin-Shtrikman (HS) lower bound. Similarly, we can
obtain the effective elastic moduli of fibrous composites and
platelet composites by submitting of theirH2 into Eqs. (16) and (18).
5. Results and discussion

We test the theoretical frameworks proposed above. First of all,
we compare the theoretical scheme for the effective elastic
modulus of two-phase composites presented in Section 2 with
those theoretical approximations such as HS bounds [13], Max-
welleGarnett/Wagner (MG/MW) models [29], and self-consistent
scheme [12], and with experimental data from both uniaxial ten-
sion and compression of cementitious composites [30], as shown in
Fig. 3. The inclusions are considered as spherical particles in
agreement with that displayed in those theoretical approximations.
As illustrated aforementioned, for two-phase particulate compos-
ites composed of spherical particles, the present theoretical scheme
reduces to the HS lower bound and MG/MW models, as well as the
results are lower than that from self-consistent scheme, as shown
in Fig. 3. Fig. 3 shows that the tendency of the present scheme
satisfies with the experimental results, though the theoretical
Fig. 3. Comparisons of the proposed theoretical scheme for the effective elastic
modulus of two-phase composites with the existing theoretical approximations, and
with experimental data reported by Stock et al. [30]. Theoretical parameters follow the
experimental conditions, such as Em ¼ 11.6 GPa and Ep ¼ 75.5 GPa.
prediction is slightly higher than the experimental data outside the
HS bounds. This implies that the interfacial effect needs to be
considered in the theoretical prediction of elastic properties of
particulate materials. In addition, we further compare the present
theoretical framework and the experimental results of mortar re-
ported by Yang [31], as shown in Table 1. We find that the present
two-phase theoretical framework overestimates the elastic
modulus of mortar, compared with the experimental data. It is
further validated that the interfacial effect significantly affects the
overall elastic properties of particulate composites, since experi-
mental and numerical studies have confirmed that relatively
porous interfacial zones with lower stiffness (with respect to ma-
trix) exist around hard particles in some specific composites like
cementitious, ceramic, and glass materials [8e10,29e31]. There-
fore, it is necessary to draw into the interfacial phase in the theo-
retical prediction.

We then compare the theoretical results of interfacial volume
fraction from the theoretical scheme introduced in Section 3 with
that of numerical results in monodisperse three-phase RVEs. The
numerical estimation of interfacial volume fraction is based on a
Monte Carlo random point sampling algorithm, which has been
elaborated in our preliminary works [22,23]. As expected, Fig. 4
displays that the theoretical results are in good agreement with
the numerical results for different aspect ratios k and geometric size
factors l. It indicates that the stability of the proposed theoretical
model for the interfacial volume fraction is favorable. From Fig. 4,
we find that, at a constant l, the interfacial volume fraction Vsi

dramatically decreases with increasing k of oblate spheroids, and
gradually increases with increasing k of prolate spheroids. Specif-
ically, when k equals to unity, meaning that spheroids degenerate to
spheres, Vsi has the smallest value. It suggests that anisotropic
particles give rise to an increment of the interfacial volume fraction
compared to isotropic spheres. The conclusion is similar with that
for polydisperse three-phase RVEs [4]. Actually, such conclusion
validates a significant issue that the packing density of ellipsoids
sharply increases as anisotropic particles deviate slightly from
perfect spheres, studied by computer simulations in the literature
[32e34]. Indeed, the packing of hard particles is denser; the overlap
potential of interfaces is more prominent, so that the interfacial
volume fraction expectedly increases. Interestingly, the interfacial
volume fraction increases with the increase of geometric size factor
l. In other words, the interfacial volume fraction intensively de-
pends on the coupling of the interfacial dimension and the equiv-
alent diameter, rather than the single factor.

Fig. 5 presents a comparison of the effective elastic moduli of
three-phase composites containing interface phase computed by
the theoretical framework demonstrated in Section 4 with exper-
imental data of granular materials including grains of various types
like glass, gravel, limestone, and lead [35]. It can be seen that the
theoretical results are consistent with experimental data of
different grains. We further apply the theoretical framework to
predict the overall elastic moduli of three-phase particulate com-
posites with two interfacial dimensions of t ¼ 20 mm and 40 mm,
and compare with experimental data reported by Yang [31] and
with the two-phase theoretical scheme without interface phase, as
shown in Fig. 6. As expected, we can see that the predicted results
of three-phase theoretical framework are closer to the experi-
mental data, compared to that of the two-phase theoretical
scheme. Especially for the higher particle volume fraction, the
difference between the three-phase theoretical framework and the
two-phase theoretical scheme is more prominent with respect to
the experimental data. It shows that the interfacial effect becomes
more significant as the particle volume fraction increases. On the
other hand, in the Supplementary Information (S4), Fig. S3 displays
the effect of the selection of elastic modulus of interfaces Ei on the



Table 1
Comparisons of experimental data and calculated results of elastic modulus from the present two-phase theoretical framework (theoretical parameters follow Yangʼs
experiment that Em ¼ 20.76 GPa and Ep ¼ 80 GPa [31]).

Vp Experimental data [31] �Ea (GPa) Calculated results �E (GPa) Relative error (�E-�Ea)/�E

0 20.760 20.760 0
0.1 22.304 23.9516 0.068
0.2 24.141 27.4881 0.121
0.3 26.350 31.4284 0.161
0.4 29.292 35.8459 0.182
0.5 32.439 40.8329 0.205

a Average of three specimens.

Fig. 4. Comparisons of the theoretical and numerical results of interfacial volume
fraction Vsi for various aspect ratios k and geometric size factors l in monodisperse
three-phase RVEs. The dash lines and points (cubes) are the theoretical and numerical
results of interfacial volume fraction, respectively. Without loss of generality, the
particle volume fraction is here set to Vp ¼ 0.2.

Fig. 5. Comparisons of the theoretical predicted results of effective elastic modulus of
three-phase composites containing interfaces with experimental data reported by
Ramesh et al. [35]. Theoretical parameters follow the experimental conditions, such as
Em ¼ 19.17 GPa, Ei ¼ 0.5 Em, and Ep ¼ 73.1 GPa for glass, 59.6 GPa for gravel, 30.7 GPa for
limestone, and 16.6 GPa for lead. The geometric size factor and average aspect ratio of
ellipsoidal particles are set to 0.01 and 2.021 from employing the unified Fourier
morphological analysis reported by Wang et al. [36].
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effective elastic modulus of particulate composites.
Fig. 7 presents the dependence of the effective elastic modulus

on the aspect ratio of hard spheroidal particles in monodisperse
three-phase particulate composites. From Fig. 7, we can see that, for
a given Vp, the effective elastic modulus Ee increases sharply with
the reduction of k of oblate spheroids, and increases gently with the
increase of k of prolate spheroids. Interestingly, when anisotropic
spheroids degenerate to isotropic spheres (i.e., k ¼ 1.0), Ee reaches
the smallest value. This means the anisotropy of particles giving
rise to an increment of the overall elastic modulus of particulate
materials with a constant volume fraction of particles. Therefore, in
the process of the design of particulate composites, it should be
required for the consideration of the influence of geometric shape
of anisotropic particles. Contrasting to Fig. 4, we are surprised to
find that the influence of aspect ratio of particles on the effective
elastic modulus and the interfacial volume fraction is so in agree-
ment. It reveals that, as a critical interfacial property, the interfacial
volume fraction is intimately related to the overall elastic proper-
ties of particulate composites.

Fig. 8 illustrates the impact of geometric size factor l on the
interfacial volume fraction Vsi and the effective elastic modulus Ee
for various particle volume fractions Vp. From Fig. 8(a), it can be
seen that, at a constant Vp, Vsi increases rapidly with the increase of
l, and then reaches a maximal value equivalent to 1-Vp as l in-
creases to a critical threshold. In doing so, soft interfaces overlap
enough to fill up the remaining matrix. It means that the three-
phase composite reduces to a two-phase structure composed of
hard particles and interfaces, with respect to the threshold state. At
this moment, the elastic modulus of �E(1) just represents the overall
elastic modulus of particulate composites, as depicted in Eqs. (15)
and (16), where �E(1) is only controlled by Ei and the physical char-
acteristics of hard particles, such as Ep, Vp, and k, irrespective of
geometric size factor l. As such, Fig. 8(b) presents that Ee maintains
a stable quantity as l exceeds to its critical threshold. In addition,
before getting to the threshold state, Ee decreases with the increase
of l. It appears that it is the first time to our knowledge that such a
conclusion is present. More interestingly, in accordance with the
definition of l, the interfacial volume fraction and the effective
elastic modulus intensively depend on the coupling of interfacial
dimension and particle size, rather than the single factor. This
finding provides an efficient tool that can allow researchers to
control the geometric size factor to design particulate composites
for their mechanical applications.

We also investigate the effect of particle size distribution (PSD)
on the effective elastic modulus of particulate composites. To this
end, we select three specific distribution functions: the power-law,
Fuller, and equal volume fraction (EVF), which have been exten-
sively used for spherical particle size distributions in the modeling
studies of particulate materials [4,9,23], as given in the following
formula.



Fig. 6. Comparisons of the proposed three-phase theoretical framework with experimental data of the elastic modulus of particulate materials with two interfacial dimensions of
(a) t ¼ 20 mm and (b) t ¼ 40 mm reported by Yang [31], and with the two-phase theoretical scheme without interface phase. Theoretical parameters follow Yangʼs experiment, in
which the average size of particles is 450 mm, Ei ¼ 0.2 Em for t ¼ 20 mm, and Ei ¼ 0.5 Em for t ¼ 40 mm. The average aspect ratio of particles of k ¼ 2.021.

Fig. 7. The effective elastic modulus Ee versus the aspect ratio k for three particle
volume fractions of Vp ¼ 0.2, 0.4, and 0.6. The basic parameters are in agreement with
those in Fig. 6(b).

Fig. 8. (a) The interfacial volume fraction Vsi versus the geometric size factor l and (b) the eff
fractions Vp. The basic parameters in Fig. 8 are in agreement with those in Fig. 6(b).
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where fN (R) is the number-based probability function of spherical
particles, Rmax and Rmin are the maximum and minimum radii of
spherical particles, respectively. b is an exponent with respect to
the power-law distribution, the value of which is usually prescribed
to more than unity. We transform a PSD of spherical particles into
the PSD of anisotropic particles by the definition of equivalent
diameter Deq. By substituting Deq into R mentioned in the above
formula, the three PSDs for anisotropic particles are displayed by
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ective elastic modulus Ee versus the geometric size factor l for different particle volume
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where fN (Deq) is the number-based probability function of aniso-
tropic particle systems, Dmaxeq and Dmineq are the maximum and
minimum equivalent diameters of anisotropic particles. It is worth
stressing that the above three particular distributions are just
introductory examples for demonstrating the influence of PSD,
other distribution functions can also be transformed in the theo-
retical and modeling researches of polydisperse particulate mate-
rials in a similar manner.

Fig. 9 presents the effective elastic modulus Ee versus particle
volume fraction Vp for Fuller distribution, EVF distribution, and the
power-law distributions with exponents of b ¼ 2.0, 3.0, and 5.0.
From Figs. 3, 5e9, we find that Ee increases in a manner that is
proportional to Vp, regardless of monodisperse or polydisperse
particle systems, except the lead case presented in Fig. 5. It is in fact
that, as a reinforcement phase, the larger volume fraction of hard
particles generates the greater elastic modulus of particulate
composites. This agrees with the conclusions reported in the
literature. For the lead case presented in Fig. 5, the lead particles are
not treated as a reinforcement phase in materials, but as a weak
phase, since the elastic modulus of lead particles is lower than that
of a matrix.

On the other hand, for a given Vp, Fig. 9 shows that Ee falls in the
order power-law distribution of b¼ 2.0 > power-law distribution of
b ¼ 3.0 > Fuller distribution > EVF distribution > power-law dis-
tribution of b¼ 5.0. Interestingly, according to Eq. (23), we find that
Fuller and EVF distributions essentially belong to the power-law
distributions corresponding to b ¼ 3.5 and 4.0. In other words,
Fig. 9 eventually presents that the effective elastic modulus de-
creases with the increase of exponent of power-law distribution. It
is an interesting generalization that can guide for the design of
particulate materials by selecting a suitable exponent of power-law
distribution to control their elastic properties. As a matter of fact,
under the same particle volume fraction, the larger exponent of
power-law distribution generates the more fine particles and
therefore has a larger surface area of solid phase, which leads to a
more amount of interfaces with weak stiffness [23]. As an intro-
ductory example, Fig. S4 (see S5) visualizes two two-phase com-
posite structures possessing the same particle volume fractionwith
the power-law distributions of b ¼ 2.0 and 5.0. It can be seen that
Fig. 9. The effective elastic modulus Ee versus particle volume fraction Vp for Fuller
distribution, EVF distribution, and the power-law distributions with exponents of
b ¼ 2.0, 3.0, and 5.0. The maximum and minimum equivalent diameters of Dmaxeq ¼ 16
and Dmineq ¼ 0.15.
the number of fine particles for the power-law distribution of
b ¼ 5.0 is obviously more than that for the power-law distribution
of b ¼ 2.0.
6. Conclusions and remarks

This paper proposed a theoretical framework in details to pre-
dict the effective elastic modulus of three-phase particulate com-
posites consisting of mono-/polydisperse spheroidal particles, soft
interfaces, and a homogeneous matrix. The theoretical framework
quantitatively addressed how the interfacial properties such as the
interfacial volume fraction, dimension, and elastic modulus affect
the overall elastic modulus of particulate composites. By comparing
with extensive experimental data, numerical results, and theoret-
ical approximations reported in the literature, the present theo-
retical framework was demonstrated to be an efficient tool for the
accurate estimation of effective elastic modulus of particulate
composites. In addition, the present scheme was used to evaluate
the effects of the interfacial properties and spheroidal particle ge-
ometries on the effective elastic modulus. It was revealed that the
effective elastic modulus increases with the increase of the inter-
facial elastic modulus. Also, the effect of aspect ratio of spheroidal
particles on the effective elastic modulus has an intrinsic similarity
to that on the interfacial volume fraction, to be specific, the
anisotropy of particles leads to the higher effective elastic modulus
and higher interfacial volume fraction. This theoretical general-
ization confirmed that the packing density of ellipsoids sharply
increases as anisotropic particles deviate slightly from perfect
spheres, which has been studied by computer simulations in the
literature. A quantitative manner was proposed for the first time
that the effective elastic modulus closely relates to the threshold of
geometric size factor. Moreover, the theoretical results further
demonstrated that the effective elastic modulus decreases with the
increase of exponents of the power-law distribution of particle
sizes. The proposed theoretical framework and these interesting
observations provide us with significant insights on optimizing the
microstructural physical characteristics for the design of particulate
composites.

On the other hand, from Fig. 8(a), it has been clearly shown that,
as the geometric size factor increases, soft interfacial layers grad-
ually enlarge and even potentially occupy to the more matrix ma-
terial. Thus, interfaces may generate a percolating path within
material structures. It is not merely of structural significance but
also results in dramatic changes of mechanical properties of ma-
terials near the percolation threshold. Accordingly, in future works,
we will study the percolation behaviors of soft interfaces in more
details, and discuss how the physical properties are affected on the
percolation threshold.
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